An object has momentum $p$ & kinetic energy $E$. If its momentum becomes $2\,p$ then its kinetic energy will be :-
$\frac{E}{2}$
$3\,E$
$2\,E$
$4\,E$
A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x\,\,cm$ into the sand, the average resistance offered by the sand of the body is
A sphere of mass $0.1\,\,kg$ is attached to a cord of $1\,m$ length. Starting from the height of its point of suspension this sphere hits a block of same mass at rest on a frictionless table. If the impact is elastic, then the kinetic energy of the block after the collision is ............. $\mathrm{J}$
A force of $\left( {2\hat i + 3\hat j + 4\hat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\hat i + 4\hat j + 5\hat k} \right)\,m.$ The power used is ............. $\mathrm{W}$
Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $W$. Here $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$. The velocity of particle at time $t = 2\, sec$. will be ........... $\mathrm{m}/ \mathrm{s}$
A particle of mass $M$ starting from rest undergoes uniform acceleration. If the speed acquired in time $T$ is $V$, then power delivered to the particle in time $T$ is