The energy required to accelerate a car from $10 \,m/s$ to $20\, m/s$ is how many times the energy required to accelerate the car from rest to $10\, m/s$
Equal
$4 $ times
$2$ times
$3$ times
A small block of mass $m$ slides along a smooth frictional track as shown in the figure. If it starts from rest at $P$ , velocity of block at point $Q$ is
A body moving with speed $v$ in space explodes into two piece of masses in the ratio $1 : 3.$ If the smaller piece comes to rest, the speed of the other piece is
A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $a_c$ is varying with time $t$ as, $a_c = k^2rt^2$, The power delivered to the particle by the forces acting on it is
A ball is dropped from height $h$ on a plane. If the coefficient of restitution of the plane is $e$ and if ball hits ground two times, the height upto which it reaches after two jumps, will be
A force $F = - K(yi + xj)$ (where K is a positive constant) acts on a particle moving in the xy-plane. Starting from the origin, the particle is taken along the positive x-axis to the point $(a, 0)$ and then parallel to the y-axis to the point $(a, a)$. The total work done by the force F on the particles is