An uncharged parallel plate capacitor having a dielectric of constant $K$ is connected to a similar air cored parallel capacitor charged to a potential $V$. The two capacitors share charges and the common potential is $V$. The dielectric constant $K$ is
$\frac{V^{\prime}-V}{V^{\prime}+V}$
$\frac{V^{\prime}-V}{V^{\prime}}$
$\frac{V^{\prime}-V}{V}$
$\frac{V-V^{\prime}}{V^{\prime}}$
A parallel plate capacitor has a plate separation of $0.01\, mm$ and use a dielectric (whose dielectric strength is $19\, KV/mm$) as an insulator. The maximum potential difference that can be applied to the terminals of the capacitor is......$V$
Define dielectric constant.
The distance between the plates of a parallel plate condenser is $8\,mm$ and $P.D.$ $120\;volts$. If a $6\,mm$ thick slab of dielectric constant $6$ is introduced between its plates, then
If a dielectric substance is introduced between the plates of a charged air-gap capacitor. The energy of the capacitor will
Two condensers of capacities $2C$ and $C$ are joined in parallel and charged upto potential $V$. The battery is removed and the condenser of capacity $C$ is filled completely with a medium of dielectric constant $K$. The $p.d.$ across the capacitors will now be