Angular momentum of a single particle moving with constant speed along circular path:
changes in magnitude but remains same in the direction
remains same in magnitude and direction
remains same in magnitude but changes in the direction
is zero
What is the physical quantity of the time rate of the angular momentum ?
A uniform rod $A B$ of mass $2 \mathrm{~kg}$ and Length $30 \mathrm{~cm}$ at rest on a smooth horizontal surface. An impulse of force $0.2\ \mathrm{Ns}$ is applied to end $B.$ The time taken by the rod to turn through at right angles will be $\frac{\pi}{\mathrm{x}}\ \mathrm{s}$, where X=____
A small mass $m$ is attached to a massless string whose other end is fixed at $P$ as shown in the figure. The mass is undergoing circular motion is the $x-y$ plane with centre at $O$ and constant angular speed $\omega$. If the angular momentum of the system, calculated about $O$ and $P$ are denoted by $\vec{L}_O$ and $\vec{L}_P$ respectively, then
A solid sphere of mass $500\,g$ and radius $5\,cm$ is rotated about one of its diameter with angular speed of $10\,rad \, s ^{-1}$. If the moment of inertia of the sphere about its tangent is $x \times 10^{-2}$ times its angular momentum about the diameter. Then the value of $x$ will be ..............
A spherical shell of $1 \,kg$ mass and radius $R$ is rolling with angular speed $\omega$ on horizontal plane (as shown in figure). The magnitude of angular momentum of the shell about the origin $O$ is $\frac{a}{3} R^{2} \omega$. The value of a will be ..............