1.Units, Dimensions and Measurement
hard

Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.

A

$\mathrm{T}^2=\frac{4 \pi^2 \mathrm{r}}{\mathrm{GM}^2}$

B

$\mathrm{T}^2=4 \pi^2 \mathrm{r}^3$

C

 $\mathrm{T}^2=\frac{4 \pi^2 \mathrm{r}^3}{G M}$

D

$\mathrm{T}^2=\frac{4 \pi^2 \mathrm{r}^2}{G M}$

(JEE MAIN-2024)

Solution

According to principle of homogeneity dimension of $LHS$ should be equal to dimensions of RHS so option $(3)$ is correct.

$\mathrm{T}^2=\frac{4 \pi^2 \mathrm{r}^3}{\mathrm{GM}}$

${\left[\mathrm{T}^2\right]=\frac{\left[\mathrm{L}^3\right]}{\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right][\mathrm{M}]}}$

(Dimension of G is $\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right]$ )

$\left[\mathrm{T}^2\right]=\frac{\left[\mathrm{L}^3\right]}{\left[\mathrm{L}^3 \mathrm{~T}^{-2}\right]}=\left[\mathrm{T}^2\right]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.