A liquid drop placed on a horizontal plane has a near spherical shape (slightly flattened due to gravity). Let $R$ be the radius of its largest horizontal section. A small disturbance causes the drop to vibrate with frequency $v$ about its equilibrium shape. By dimensional analysis, the ratio $\frac{v}{\sqrt{\sigma / \rho R^3}}$ can be (Here, $\sigma$ is surface tension, $\rho$ is density, $g$ is acceleration due to gravity and $k$ is an arbitrary dimensionless constant)

  • [KVPY 2012]
  • A

    $k \rho g R^2 / \sigma$

  • B

    $k \rho R^3 / g_\sigma$

  • C

    $k \rho R^2 / g \sigma$

  • D

    $k \rho / g \sigma$

Similar Questions

From the dimensional consideration, which of the following equation is correct

The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m v^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$

Which of the following represents the dimensions of Farad

In the relation : $\frac{d y}{d x}=2 \omega \sin \left(\omega t+\phi_0\right)$ the dimensional formula for $\left(\omega t+\phi_0\right)$ is :

In the following list, the only pair which have different dimensions, is