Are the following pair of sets equal ? Give reasons.
$A = \{ 2,3\} ,\quad \,\,\,B = \{ x:x$ is solution of ${x^2} + 5x + 6 = 0\} $
$A = \{ 2,3\} ,\quad \,\,\,B = \{ x:x$ is solution of ${x^2} + 5x + 6 = 0\} $
The equation $x^{2}+5 x+6=0$ can be solved as:
$x(x+3)+2(x+3)=0$
$(x+2)(x+3)=0$
$x=-2$ or $x=-3$
$\therefore A=\{2,3\} ; B=\{-2,-3\}$
$\therefore A \neq B$
In the following state whether $\mathrm{A = B}$ or not :
$A = \{ x:x$ is a multiple of $10\} ;B = \{ 10,15,20,25,30 \ldots \ldots \} $
Write the following sets in the set-builder form :
${\rm{\{ 5,25,125,625\} }}$
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \not\subset B$, then $x \in B$
Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?
$\{1,2,3\}\subset A$
Which of the following sets are finite or infinite.
The set of prime numbers less than $99$