- Home
- Standard 11
- Mathematics
9.Straight Line
hard
Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is
A
$ \pm (p - q)(r - s)\,{\rm{cosec}}(\alpha - \beta )$
B
$(p + q)(r - s)\,{\rm{cosec }}(\alpha + \beta )$
C
$(p + q)(r + s)\,{\rm{cosec }}(\alpha - \beta )$
D
None of these
Solution
(a) Use, Area = ${p_1}.{p_2}{\rm{cosec}}\theta $
where $\tan \theta = \frac{{ – \tan \alpha + \tan \beta }}{{1 + \tan \alpha \tan \beta }} = \tan (\beta – \alpha )$
$\theta = \beta – \alpha ,{p_1} = p – q,{p_2} = r – s$.
Standard 11
Mathematics