Gujarati
9.Straight Line
hard

Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is

A

$ \pm (p - q)(r - s)\,{\rm{cosec}}(\alpha - \beta )$

B

$(p + q)(r - s)\,{\rm{cosec }}(\alpha + \beta )$

C

$(p + q)(r + s)\,{\rm{cosec }}(\alpha - \beta )$

D

None of these

Solution

(a) Use, Area = ${p_1}.{p_2}{\rm{cosec}}\theta $

where $\tan \theta = \frac{{ – \tan \alpha + \tan \beta }}{{1 + \tan \alpha \tan \beta }} = \tan (\beta – \alpha )$

 $\theta = \beta – \alpha ,{p_1} = p – q,{p_2} = r – s$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.