Area of the rhombus bounded by the four lines, $ax \pm by \pm c = 0$ is :

  • A

    $\frac{{{c^2}}}{{2\,ab}}$

  • B

    $\frac{{2\,{c^2}}}{{ab}}$

  • C

    $\frac{{4\,{c^2}}}{{ab}}$

  • D

    $\frac{{ab}}{{4\,{c^2}}}$

Similar Questions

The pair of straight lines $x^2 - 4xy + y^2 = 0$ together with the line $x + y + 4 = 0$ form a triangle which is :

If the straight lines $x + 3y = 4,\,\,3x + y = 4$ and $x +y = 0$ form a triangle, then the triangle is

  • [AIEEE 2012]

Let the line $x+y=1$ meet the axes of $x$ and $y$ at $A$ and $B$, respectively. A right angled triangle $A M N$ is inscribed in the triangle $O A B$, where $O$ is the origin and the points $M$ and $N$ lie on the lines $OB$ and $A B$, respectively. If the area of the triangle AMN is $\frac{4}{9}$ of the area of the triangle $OAB$ and $AN : NB =\lambda: 1$, then the sum of all possible value$(s)$ of is $\lambda$ :

  • [JEE MAIN 2025]

$ABC$ is an isosceles triangle . If the co-ordinates of the base are $(1, 3)$ and $(- 2, 7) $, then co-ordinates of vertex $A$ can be :

Let ${ }^n C_{r-1}=28,{ }^n C_r=56$ and ${ }^n C_{r+1}=70$. Let $A (4 \cos t, 4 \sin t ), B (2 \sin t ,-2 \cos t )$ and $C \left(3 r - n , r ^2- n -1\right)$ be the vertices of a triangle $A B C$, where $t$ is a parameter. If $(3 x-1)^2+(3 y)^2=\alpha$, is the locus of the centroid of triangle $ABC$ , then $\alpha$ equals :

  • [JEE MAIN 2025]