The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices $(0, 0), (0, 21)$ and $(21, 0)$, is
$133$
$190$
$233$
$105$
The origin and the points where the line $L_1$ intersect the $x$ -axis and $y$ -axis are vertices of right angled triangle $T$ whose area is $8$. Also the line $L_1$ is perpendicular to line $L_2$ : $4x -y = 3$, then perimeter of triangle $T$ is -
The base $BC$ of a triangle $ABC$ is bisected at the point $(p, q)$ and the equation to the side $AB \,\,ane\,\, AC$ are $px + qy = 1 \,\,ane\,\, qx + py = 1$ . The equation of the median through $A$ is :
Area of the parallelogram formed by the lines ${a_1}x + {b_1}y + {c_1} = 0$,${a_1}x + {b_1}y + {d_1} = 0$and ${a_2}x + {b_2}y + {c_2} = 0$, ${a_2}x + {b_2}y + {d_2} = 0$is
A straight line passing through $P(3, 1)$ meet the coordinates axes at $A$ and $B$. It is given that distance of this straight line from the origin $'O'$ is maximum. Area of triangle $OAB$ is equal to
The line $2x + 3y = 12$ meets the $x$-axis at $A$ and $y$-axis at $B$. The line through $(5, 5)$ perpendicular to $AB$ meets the $x$- axis , $y$ axis and the $AB$ at $C,\,D$ and $E$ respectively. If $O$ is the origin of coordinates, then the area of $OCEB$ is