The equation of perpendicular bisectors of the sides $AB$ and $AC$ of a triangle $ABC$ are $x - y + 5 = 0$ and $x + 2y = 0$ respectively. If the point $A$ is $(1,\; - \;2)$, then the equation of line $BC$ is
$23x + 14y - 40 = 0$
$14x - 23y + 40 = 0$
$23x - 14y + 40 = 0$
$14x + 23y - 40 = 0$
If $A$ is $(2, 5)$, $B$ is $(4, -11)$ and $ C$ lies on $9x + 7y + 4 = 0$, then the locus of the centroid of the $\Delta ABC$ is a straight line parallel to the straight line is
Let $P$ be a moving point such that sum of its perpendicular distances from $2x + y = 3$ and $x - 2y + 1 = 0$ is always $2\, units$ then area bounded by locus of point $P$ is
Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4$, $A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is
Two sides of a rhombus are along the lines, $x -y+ 1 = 0$ and $7x-y-5 =0.$ If its diagonals intersect at $(-1,-2),$ then which one of the following is a vertex of this rhombus?
Let $m_{1}, m_{2}$ be the slopes of two adjacent sides of a square of side a such that $a^{2}+11 a+3\left(m_{2}^{2}+m_{2}^{2}\right)=220$. If one vertex of the square is $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$, where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal is $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$, then $72 \left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$ is equal to.