As shown in the figure a block of mass $10\,kg$ lying on a horizontal surface is pulled by a force $F$ acting at an angle $30^{\circ}$, with horizontal. For $\mu_{ s }=0.25$, the block will just start to move for the value of $F..........\,N$ : $\left[\right.$ Given $\left.g =10\,ms ^{-2}\right]$
$33.3$
$25.2$
$20$
$35.7$
Imagine the situation in which the given arrangement is placed inside a trolley that can move only in the horizontal direction, as shown in figure. If the trolley is accelerated horizontally along the positive $x$ -axis with $a_0$, then Identify the correct statement $(s)$ related to the tension $T$ in the string
A block of mass $m$ is pressed against a vertical surface by a spring of unstretched length $l$ . If the coefficient of friction between the block and the surface is $\mu $. Choose the correct statement.
Which is a suitable method to decrease friction
......... $m/s^2$ is magnitude of acceleration of a block moving with speed $10\,m/s$ on a rough surface if coefficient of friction is $0.2$.
A rectangular box lies on a rough inclined surface. The coefficient of friction between the surface and the box is $\mu $. Let the mass of the box be $m$.
$(a)$ At what angle of inclination $\theta $ of the plane to the horizontal will the box just start to slide down the plane ?
$(b)$ What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $\alpha > \theta $ ?
$(c)$ What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed ?
$d)$ What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration $a$ ?