Assertion : Consider two identical charges placed distance $2d$ apart, along $x-$ axis. The equilibrium of a positive test charge placed at the point $O$ midway between them is stable for displacements along the $x-$ axis.

Reason: Force on test charge is zero

115-1011

  • [AIIMS 2013]
  • A

    If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

  • B

    If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.

  • C

    If Assertion is correct but Reason is incorrect.

  • D

    If both the Assertion and Reason are incorrect.

Similar Questions

Two charges $q$ and $-3q$ are placed fixed on $x-axis$ separated by distance $'d'$. Where should a third charge $2q$ be placed such that it will not experience any force ?

An infinite number of point charges, each carrying $1 \,\mu C$ charge, are placed along the y-axis at $y=1\, m , 2\, m , 4 \,m , 8\, m \ldots \ldots \ldots \ldots \ldots$

The total force on a $1 \,C$ point charge, placed at the origin, is $x \times 10^{3}\, N$. The value of $x$, to the nearest integer, is .........

[Take $\left.\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,Nm ^{2} / C ^{2}\right]$

  • [JEE MAIN 2021]

Two identical positive charges $Q$ each are fixed at a distance of ' $2 a$ ' apart from each other. Another point charge qo with mass ' $m$ ' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge $q_{0}$ executes $SHM$. The time period of oscillation of charge $q_{0}$ will be.

  • [JEE MAIN 2022]

${F_g}$ and ${F_e}$ represents gravitational and electrostatic force respectively between electrons situated at a distance $10\, cm$. The ratio of ${F_g}/{F_e}$ is of the order of

A conducting sphere of radius $R$, and carrying a charge $q$ is joined to a conducting sphere of radius $2R$, and carrying a charge $-2q$. The charge flowing between them will be