1. Electric Charges and Fields
medium

Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to

A

$y$

B

$-y$

C

$\frac{1}{y}$

D

$-$$\;\frac{1}{y}$

(JEE MAIN-2013)

Solution

$\Rightarrow \mathrm{F}_{\mathrm{net}}=2 \mathrm{F} \cos \theta$

$F_{n e t}=\frac{2 k q\left(\frac{q}{2}\right)}{(\sqrt{y^{2}+a^{2}})^{2}} \cdot \frac{y}{\sqrt{y^{2}+a^{2}}}$

$F_{n e t}=\frac{2 k q\left(\frac{q}{2}\right) y}{\left(y^{2}+a^{2}\right)^{3 / 2}} \Rightarrow \frac{k q^{2} y}{a^{3}}$

So, $F \propto y$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.