3 and 4 .Determinants and Matrices
medium

ધારો કે $X, Y, Z, W$ અને $P$ અનુક્રમે $2 \times n,3 \times k,2 \times p,n \times 3$ અને $p \times k$ કક્ષાવાળા શ્રેણિક છે. $P Y+W Y$ વ્યાખ્યાયિત થાય તે રીતે $n, k$ અને $p$ પર પ્રતિબંધ મૂકવામાં આવે તો :

A

$p$ એ સ્વૈર અચળ , $k=3$

B

$k$ એ સ્વૈર અચળ , $p=2$

C

$k=3$,  $p=n$

D

$k=2$,  $p=3$

Solution

Matrices $P$ and $Y$ are of the orders $p \times k$ and $3 \times k$ respectively.

Therefore, matrix $P Y$ will be defined if $k=3$

Consequently, $P Y$ will be of the order $p \times k$. Matrices $W$ and $Y$ are of the orders $n \times 3$ and $3 \times k$ respectively.

since the number of columns in $W$ is equal to the number of rows in $Y$, matrix $W Y$ is welldefined and is of the order $n\times k$.

Matrices $P Y$ and $W Y$ can be added only when their orders are the same.

However, $P Y$ is of the order $p \times k$ and $W Y$ is of the order $n \times k .$ Therefore. we must have

$p=n$

Thus, $k=3$ and $p=n$. are the restrictions on $n, \,k,$ and $p$ so that $P Y+W Y$ will be defined.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.