- Home
- Standard 12
- Mathematics
मान लीजिए कि $X , Y , Z , W$ तथा $P$ क्रमश: $2 \times n, 3 \times k, 2 \times p, n \times 3$ तथा $p \times k,$ कोटियों के आव्यूह हैं। $PY + WY$ के परिभाषित होने के लिए $n, k$ तथा $p$ पर क्या प्रतिबंध होगा?
$p$ स्वेच्छ है, $k=3$
$k$ स्वेच्छ है, $p=2$
$k=3$, $p=n$
$k=2$, $p=3$
Solution
Matrices $P$ and $Y$ are of the orders $p \times k$ and $3 \times k$ respectively.
Therefore, matrix $P Y$ will be defined if $k=3$
Consequently, $P Y$ will be of the order $p \times k$. Matrices $W$ and $Y$ are of the orders $n \times 3$ and $3 \times k$ respectively.
since the number of columns in $W$ is equal to the number of rows in $Y$, matrix $W Y$ is welldefined and is of the order $n\times k$.
Matrices $P Y$ and $W Y$ can be added only when their orders are the same.
However, $P Y$ is of the order $p \times k$ and $W Y$ is of the order $n \times k .$ Therefore. we must have
$p=n$
Thus, $k=3$ and $p=n$. are the restrictions on $n, \,k,$ and $p$ so that $P Y+W Y$ will be defined.