Bob of a simple pendulum of length $l$ is made of iron . The pendulum is oscillating over a horizontal coil carrying direct current. If the time period of the pendulum is $T$ then
$T < 2\pi \sqrt {\frac{l}{g}} $ and damping is smaller than in air alone.
$T = 2\pi \sqrt {\frac{l}{g}} $ and damping is larger than in air alone.
$T > 2\pi \sqrt {\frac{l}{g}}$ and damping is smaller than in air alone.
$T < 2\pi \sqrt {\frac{l}{g}} $ and damping is larger than in air alone
A proton carrying $1\, Me V$ kinetic energy is moving in a circular path of radius $R$ in uniform magnetic field. What should be the energy of an $\alpha -$ particle to describe a circle of same radius in the same field ?........$MeV$
A deuteron and a proton moving with equal kinetic energy enter into to a uniform magnetic field at right angle to the field. If $r_{d}$ and $r_{p}$ are the radii of their circular paths respectively, then the ratio $\frac{r_{d}}{r_{p}}$ will be $\sqrt{ x }: 1$ where $x$ is ..........
A proton and an alpha particle both enter a region of uniform magnetic field $B,$ moving at right angles to the field $B.$ If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by proton is $1\,\, MeV,$ the energy acquired by the alpha particle will be......$MeV$
Electron moves at right angles to a magnetic field of $1.5 \times 10^{-2}\,tesla$ with speed of $6 \times 10^7\,m/s$. If the specific charge of the electron is $1.7 \times 10^{11}\,C/kg$. The radius of circular path will be......$cm$
The region between $y = 0$ and $y = d$ contains a magnetic field $\vec B = B\hat z$ A particle of mass $m$ and charge $q$ enters the region with a velocity $\vec v = v\hat i$. If $d = \frac{{mv}}{{2qB}}$ , the acceleration of the charged particle at the point of its emergence at the other side is