નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$
$\Delta=\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|$
Taking out common factors $a, b$ and $c$ from $R_{1}, R_{2}$ and $R_{3}$ respectively, we have:
$\Delta=a b c\left|\begin{array}{ccc}a+\frac{1}{a} & b & c \\ a & b+\frac{1}{b} & c \\ a & b & c+\frac{1}{c}\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:
$\Delta=a b c\left|\begin{array}{ccc}a+\frac{1}{a} & b & c \\ -\frac{1}{a} & \frac{1}{b} & 0 \\ -\frac{1}{a} & 0 & \frac{1}{c}\end{array}\right|$
Applying $C_{1} \rightarrow a C_{1}, C_{2} \rightarrow b C_{2}$ and $C_{3} \rightarrow c C_{3},$ we have:
$\Delta=a b c \times \frac{1}{a b c}\left|\begin{array}{ccc}a^{2}+1 & b^{2} & c^{2} \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right|$
Expanding along $R_{3},$ we have:
$\Delta=-1\left|\begin{array}{ll}b^{2} & c^{2} \\ 1 & 0\end{array}\right|+1\left|\begin{array}{ll}a^{2}+1 & b^{2} \\ -1 & 1\end{array}\right|$
$=-1\left(-c^{2}\right)+\left(a^{2}+1+b^{2}\right)=1+a^{2}+b^{2}+c^{2}$
Hence, the given result is proved.
$\left| {\,\begin{array}{*{20}{c}}4&{ - 6}&1\\{ - 1}&{ - 1}&1\\{ - 4}&{11}&{ - 1\,}\end{array}} \right|= . . . $
જો $\left| {\,\begin{array}{*{20}{c}}{y + z}&x&y\\{z + x}&z&x\\{x + y}&y&z\end{array}\,} \right| = k(x + y + z){(x - z)^2}$, તો $k = $
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$ તો $a,b,c$ એ . . . .શ્રેણીમાં છે .
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$