જો $a,b,c$ એ અસમાન હોય તો $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|= 0$ માટે . . . .શરતનું પાલન થવું જોઈએ.

  • [IIT 1985]
  • A

    $1 + abc = 0$

  • B

    $a + b + c + 1 = 0$

  • C

    $(a - b)(b - c)(c - a) = 0$

  • D

    એકપણ નહી.

Similar Questions

જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&\omega &{{\omega ^2}}\\\omega &{x + {\omega ^2}}&1\\{{\omega ^2}}&1&{x + \omega }\end{array}\,} \right| = $

$\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|$ નું મૂલ્ય ............ છે.

  • [JEE MAIN 2021]

જો $\mathrm{a, b, c}$ પૈકી પ્રત્યેક બે અસમાન અને પ્રત્યેક ધન હોય, તો સાબિત કરો કે નિશ્ચાયક $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ નું મૂલ્ય ઋણ છે.

$\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ = . . .

જો ${a_1},{a_2},{a_3},........,{a_n},......$ એ સમગુણોતર શ્રેણીમાં હોય અને દરેક $i$ માટે ${a_i} > 0$  તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|= . . . $