By “the overall order of a reaction”, we mean
The number of concentration terms in the equation for the reaction
The sum of powers to which the concentration terms are raised in the velocity equation
The least number of molecules of the reactants needed for the reaction
The number of reactants which take part in the reaction
The unit of rate constant of second order reaction is usually expressed as
From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
$(iv)$ $C _{2} H _{5} Cl ( g ) \rightarrow C _{2} H _{4}( g )+ HCl ( g ) \quad$ Rate $=k\left[ C _{2} H _{5} Cl \right]$
When the concentration of A in the reaction $A + B$ $\rightleftharpoons$ $AB$ is doubled, the rate of reaction will be
For the reaction $3\,{A_{\,(g)\,}}\,\xrightarrow{K}\,{B_{(g)}}\, + \,\,{C_{(g)\,,}}K$ is ${10^{ - 14}}\,L/mol.\min .$ if $(A) = 0.5\,M$ then the value of $ - \frac{{d(A)}}{{dt}}$ (in $M / sec$ ) is.
For the reaction
$2H_2 + 2NO \to N_2 + 2H_2O$
the following mechanism has been proposed
$(i)$ $2NO \rightleftharpoons N_2O_2\,$ (fast)
$(ii)$ $N_2O_2 + H_2 \xrightarrow{{{k_2}}} N_2O + H_2O\,$ (slow)
$(iii)$ $N_2O + H_2 \to N_2 + H_2O\,$ (fast)
then what will be the rate law of this reaction ?