Calculate the heat required to convert $3\; kg$ of ice at $-12\,^{\circ} C$ kept in a calorimeter to steam at $100\,^{\circ} C$ at atmospheric pressure. Given specific heat capacity of $ice =2100\; J \,kg ^{-1} K ^{-1}$. specific heat capacity of water $=4186\; J kg ^{-1} K ^{-1}$, latent heat of fusion of ice $=3.35 \times 10^{5} \;J \,kg ^{-1}$ and latent heat of steam $=2.256 \times 10^{6}\; J \,kg ^{-1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Mass of the ice $ , m=3 kg$

specific heat capacity of ice $ , s _{\text {tee }}$

$=2100 J kg ^{-1} K ^{-1}$

specific heat capacity of water, $s_{\text {water }}$

$=4186 J kg ^{-1} K ^{-1}$

latent heat of fusion of ice $ , L_{ ice }$

$=3.35 \times 10^{5} J kg ^{-1}$

latent heat of steam, $L_{\text {steam }}$

$=2.256 \times 10^{6} J kg ^{-1}$

- Jow, $\quad Q=$ heat required to convert $3 kg$ of

$\text { 1ce at }-12^{\circ} C \text { to steam at } 100^{\circ} C$

$Q_{1}=$ heat required to convert ice at

$-12^{\circ} C \text { to } 1 ce \text { at } 0^{\circ} C$

$= m s _{\text {sce }} \Delta T_{1}=(3 kg )\left(2100 J kg ^{-1}\right.\left. K ^{-1}\right)[0-(-12)]^{\circ} C =75600 J$

$Q_{2}=$ heat required to melt $1 ce$ at $0^{\circ} C$ to water at $0^{\circ} C$

$=m L_{ fice }=(3 kg )\left(3.35 \times 10^{5} J kg ^{-1}\right)$

$=1005000 J$

$Q_{3}=$ heat required to convert water at $0^{\circ} C$ to water at $100^{\circ} C$

$=m s_{w} \Delta T_{2}=(3 kg )\left(4186 J kg ^{-1} K ^{-1}\right)$

$-\left(100^{\circ} C \right)$

$=1255800 \;J$

$Q _{4}=$ heat required to convert water at $100^{\circ} C$ to steam at $100^{\circ} C$

$=m L_{\text {steam }}=(3 kg )\left(2.256 \times 10^{6}\right.\left.J kg ^{-1}\right)$

$= 6768000 J$

$Q =Q_{1}+Q_{2}+Q_{3}+Q_{4}$

$=75600 J +1005000 J+1255800 J +6768000 J$

$=9.1 \times 10^{6} \;J$

Similar Questions

An electric kettle (rated accurately at $2.5\, kW$) is used to heat $3\, kg$ of water from $15\,^oC$ to boiling point. It takes $9.5$ minute. Then, the amount of heat that has been lost is

$10\,gm$ of ice at $0\,^oC$ is mixed with $'m'\,gm$ of water at $50\,^oC$ . ........ $gm$ is minimum value of $m$ so that ice melts completely. ( $L_f = 80\,cal/gm$ and $S_W = 1\,cal/gm-\,^oC$ )

$50\, gm$ of ice at $0°C$ is mixed with $50\, gm$ of water at $80°C,$ final temperature of mixture will be........ $^oC$

$50\, g$ ice at $0\,^oC$ is dropped into a calorimeter containing $100\, g$ water at $30\,^oC$. If thermal capacity of calorimeter is zero then amount of ice left in the mixture at equilibrium is ........ $gm$

Three liquids with masses ${m_1},\,{m_2},\,{m_3}$ are thoroughly mixed. If their specific heats are ${c_1},\,{c_2},\,{c_3}$ and their temperatures ${T_1},\,{T_2},\,{T_3}$ respectively, then the temperature of the mixture is