10-2.Transmission of Heat
hard

Certain quantity of water cools from $70^o  C$ to $60^o C$ in the first $5$ minutes and to $54^o C$ in the next $5$ minutes. The temperature of the surroundings is ..... $^oC$

A

$45$

B

$20$

C

$42$

D

$10$

(AIPMT-2014)

Solution

Let $T_s$ be the temperature of the surroundings.

According to $Newton's$ law of cooling

$\frac{{{T_1} – {T_2}}}{t} = K\left( {\frac{{{T_1} + {T_2}}}{2} – {T_s}} \right)$

For first $5\,minutes,$

${T_1} = {70^ \circ }C,{T_2} = {60^ \circ }C,t = 5\,minutes$

$\therefore \frac{{70 – 60}}{5} = K\left( {\frac{{70 + 60}}{2} – {T_s}} \right)$

$\frac{{10}}{5} = K\left( {65 – {T_s}} \right)$                    $…(i)$

For next $5\,minutes$

${T_1} = {60^ \circ }C,{T_2} = {54^ \circ }C,t = 5 minutes$

$\therefore \frac{{60 – 54}}{5} = K\left( {\frac{{60 + 54}}{2} – {T_s}} \right)$

$\frac{6}{5} = K\left( {57 – {T_s}} \right)$                       $…(ii)$

Divide eqn. $(i)$ by eqn. $(ii)$ , we get

$\frac{5}{3} = \frac{{65 – {T_s}}}{{57 – {T_s}}}$

$285 – 5{T_s} = 195 – 3{T_s}$

$2{T_s} = 90\,\,or\,\,{T_s} = {45^ \circ }C$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.