- Home
- Standard 12
- Physics
$R$ ત્રિજ્યાની અર્ધરીગ પર $q$ વિધુતભાર સમાન રીતે વિતરણ કરેલ હોય તો કેન્દ્ર પર .............. વિધુતક્ષેત્ર મળે.
$\frac{q}{{2{\pi ^2}\,{\varepsilon _0}{R^2}}}$
$\frac{q}{{4{\pi ^2}\,{\varepsilon _0}{R^2}}}$
$\frac{q}{{4{\pi }\,{\varepsilon _0}{R^2}}}$
$\frac{q}{{2{\pi }\,{\varepsilon _0}{R^2}}}$
Solution

From figure, $\mathrm{d} \ell=\mathrm{Rd} \theta$
Charge on $d \ell=\lambda \mathrm{Rd} \theta$
where $\lambda=$ linear charge density.
Electric field at centre due to $d \ell$
$\mathrm{dE}=\mathrm{k} \cdot \frac{\lambda \mathrm{Rd} \theta}{\mathrm{R}^{2}}$
We need to consider only the component $dE$ $\cos \theta,$ as the component $dE$ sin $\theta$ will cancel out.
$\therefore $ Total field at centre $=2 \int_{0}^{\pi / 2} \mathrm{dE}\, \cos \theta$
$=2 \int_{0}^{\pi / 2} \frac{\mathrm{k} \lambda \mathrm{R}\, \cos \theta}{\mathrm{R}^{2}} \mathrm{d} \theta=\frac{2 \mathrm{k} \lambda}{\mathrm{R}} \int_{0}^{\pi / 2} \cos\, \theta \mathrm{d} \theta$
$=\frac{9}{2 \pi^{2} \epsilon_{0} R^{2}} \quad\left(\text { since } \lambda=\frac{q}{\pi R}\right)$