સાચી જોડણી પસંદ કરો
સૂચિ I |
સૂચિ II |
---|---|
$(i)$ ક્યુરી |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ પ્રકાશવર્ષ |
$(B)$ $M$ |
$(iii)$ દ્વિધ્રુવીય તીવ્રતા |
$(C)$ પરિમાણરહિત |
$(iv)$ આણ્વિય વજન |
$(D)$ $T$ |
$(v)$ ડેસીબલ |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
$(i) G, (ii) H, (iii) C, (iv) B, (v) C$
$(i) D, (ii) H, (iii) I, (iv) B, (v) G$
$(i) G, (ii) H, (iii) I, (iv) B, (v) G$
એક પણ નહિ
વળાંકવાળા રસ્તા પર સાઇકલ $\theta $ ખૂણે વળાંક લે તો તેના માટેનું સૂત્ર $\tan \theta = \frac{{rg}}{{{v^2}}}$ મુજબ આપવામાં આવે છે. તો આ સૂત્ર .....
વર્તુળનું સમીકરણ $x^2+y^2=a^2$, જ્યાં $a$ એ ત્રિજ્યા છે, વડે આપવામાં આવે છે. જો ઉગમબિંદુને $(0,0)$ ને બદલે નવા મૂલ્ય આગળ ખસેડતા આ સમીકરણ બદલાય છે. નવા સમીકરણ : $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ માટે $A$ અને $B$ નાં સાચા પરિણામો ......... થશે. $t$ નું પરિમાણ $\left[ T ^{-1}\right]$ વડે આપવામાં આવે છે.
મુદ્રણની ઘણી ત્રુટિઓ ધરાવતાં એક પુસ્તકમાં આવર્તગતિ કરતાં એક કણના સ્થાનાંતરનાં ચાર જુદાં જુદાં સૂત્રો આપેલ છે :
$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$
$(b)\;y=a \sin v t$
$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$
$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$
( $a =$ કણનું મહત્તમ સ્થાનાંતર, $v =$ કણની ઝડપ, $T =$ આવર્તકાળ ) પરિમાણને આધારે ખોટાં સૂત્રોને નાબૂદ કરો.
ન્યુટનના મત અનુસાર, $A$ ક્ષેત્રફળવાળા અને $\Delta v/\Delta z$ જેટલું વેગ-પ્રચલન ધરાવતાં પ્રવાહીના બે સ્તરો વચ્ચે લાગતું શ્યાનતા બળ $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ છે, જ્યાં $\eta $ શ્યાનતા ગુણાંક છે. $\eta$ નું પારિમાણિક સૂત્ર શું થાય?