Consider $a$ uniformly charged hemispherical shell of radius $R$ and charge $Q$ . If field at point $A (0, 0, -z_0)$ is $ \vec E$ then field at point $(0, 0, z_0)$ is $[z_0 < R]$
$ - \vec E$
$ - \vec E\, + \,\frac{{KQ}}{{{z_0}}}\hat k$
$+ \vec E$
None of these
Find the force experienced by the semicircular rod charged with a charge $q$, placed as shown in figure. Radius of the wire is $R$ and the line of charge with linear charge density $\lambda $ is passing through its centre and perpendicular to the plane of wire.
An infinite plane sheet of charge having uniform surface charge density $+\sigma_5 \mathrm{C} / \mathrm{m}^2$ is placed on $\mathrm{x}-\mathrm{y}$ plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e \mathrm{C} / \mathrm{m}$ is placed at $z=4 \mathrm{~m}$ plane and parallel to $y$-axis. If the magnitude values $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ then at point $(0,0,2)$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi \sqrt{\mathrm{n}}: 1$. The value of $n$ is
A conducting sphere of radius $10 \;cm$ has an unknown charge. If the electric field $20\; cm$ from the centre of the sphere is $1.5 \times 10^{3} \;N / C$ and points radially inward, what is the net charge (in $n\;C$) on the sphere?
An early model for an atom considered it to have a positively charged point nucleus of charge $Ze$, surrounded by a uniform density of negative charge up to a radius $R$. The atom as a whole is neutral. For this model, what is the electric field at a distance $r$ from the nucleus?
An infinite line charge produces a field of $9 \times 10^4 \;N/C$ at a distance of $2\; cm$. Calculate the linear charge density in $\mu C / m$