Electric field at a point varies as ${r^o}$ for
An electric dipole
A point charge
A plane infinite sheet of charge
A line charge of infinite length
Let $\sigma$ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region $E_{ I }, E_{ II }$ and $E_{III}$ are
Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then
Consider an atom with atomic number $Z$ as consisting of a positive point charge at the centre and surrounded by a distribution of negative electricity uniformly distributed within a sphere of radius $R$. The electric field at a point inside the atom at a distance $r$ from the centre is
Two fixed, identical conducting plates $(\alpha $ and $\beta )$, each of surface area $S$ are charged to $-\mathrm{Q}$ and $\mathrm{q}$, respectively, where $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ A third identical plate $(\gamma )$, free to move is located on the other side of the plate with charge $q$ at a distance $d$ as per figure. The third plate is released and collides with the plate $\beta $. Assume the collision is elastic and the time of collision is sufficient to redistribute charge amongst $\beta $ and $\gamma $.
$(a)$ Find the electric field acting on the plate $\gamma $ before collision.
$(b)$ Find the charges on $\beta $ and $\gamma $ after the collision.
$(c)$ Find the velocity of the plate $\gamma $ after the collision and at a distance $d$ from the plate $\beta $.
Consider the force $F$ on a charge $'q'$ due to a uniformly charged spherical shell of radius $R$ carrying charge $Q$ distributed uniformly over it. Which one of the following statements is true for $F,$ if $'q'$ is placed at distance $r$ from the centre of the shell $?$