Electric field at a point varies as ${r^o}$ for
An electric dipole
A point charge
A plane infinite sheet of charge
A line charge of infinite length
(c) $E = \sigma / (2\varepsilon _0)$
The electric field $\vec E = {E_0}y\hat j$ acts in the space in which a cylinder of radius $r$ and length $l$ is placed with its axis parallel to $y-$ axis. The charge inside the volume of cylinder is
Let $P\left( r \right) = \frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point $P$ inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0\times 10^{-22}\; C/m^2$. What is $E$:
$(a)$ in the outer region of the first plate,
$(b)$ in the outer region of the second plate, and
$(c)$ between the plates?
An isolated sphere of radius $R$ contains uniform volume distribution of positive charge. Which of the curve shown below, correctly illustrates the dependence of the magnitude of the electric field of the sphere as a function of the distance $r$ from its centre?
An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho $. It has a spherical cavity of radius $R/2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2R$ from the axis of the cylinder, is given by the expression $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ .The value of $K$ is
Confusing about what to choose? Our team will schedule a demo shortly.