Mention applications of Gauss’s law.
The applications of Gauss's law are as below :
$(1)$ To obtain field due to an infinitely long straight uniformly charged wire.
$(2)$ To obtain field due to uniformly charged infinite plane sheet.
$(3)$ To obtain field due to uniformly charged thin spherical shell.
$(4)$ To obtain field due to uniformly charged sphere.
Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0\times 10^{-22}\; C/m^2$. What is $E$:
$(a)$ in the outer region of the first plate,
$(b)$ in the outer region of the second plate, and
$(c)$ between the plates?
Three infinitely long charge sheets are placed as shown in figure. The electric field at point $P$ is
The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.
List-$I$ | List-$II$ |
$E$ is independent of $d$ | A point charge $Q$ at the origin |
$E \propto \frac{1}{d}$ | A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$. |
$E \propto \frac{1}{d^2}$ | An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$ |
$E \propto \frac{1}{d^3}$ | Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$ |
plane with uniform surface charge density |
Graphical variation of electric field due to a uniformly charged insulating solid sphere of radius $R$, with distance $r$ from the centre $O$ is represented by:
The region between two concentric spheres ofradii '$a$' and '$b$', respectively (see figure), have volume charge density $\rho = \frac{A}{r}$ where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is :