Mention applications of Gauss’s law.
The applications of Gauss's law are as below :
$(1)$ To obtain field due to an infinitely long straight uniformly charged wire.
$(2)$ To obtain field due to uniformly charged infinite plane sheet.
$(3)$ To obtain field due to uniformly charged thin spherical shell.
$(4)$ To obtain field due to uniformly charged sphere.
A charge $Q$ is uniformly distributed over a large square plate of copper. The electric field at a point very close to the centre of the plane is $10\, V/m$. If the copper plate is replaced by a plastic plate of the same geometrical dimensions and carrying the same charge $Q$ uniformly distributed, then the electric field at the point $P$ will be......$V/m$
$\sigma$ is the uniform surface charge density of a thin spherical shell of radius $R$. The electric field at any point on the surface of the spherical shell is:
According to Gauss’ Theorem, electric field of an infinitely long straight wire is proportional to
A non-conducting solid sphere of radius $R$ is uniformly charged. The magnitude of the electric field due to the sphere at a distance $r$ from its centre
There is a solid sphere of radius $‘R’$ having uniformly distributed charge throughout it. What is the relation between electric field $‘E’$ and distance $‘r’$ from the centre ( $r$ is less than R ) ?