Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Consider a branch of the hyperbola $x^2-2 y^2-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point $A$. Let $B$ be one of the end points of its latus rectum. If $\mathrm{C}$ is the focus of the hyperbola nearest to the point $\mathrm{A}$, then the area of the triangle $\mathrm{ABC}$ is

A

$1-\sqrt{\frac{2}{3}}$

B

$\sqrt{\frac{3}{2}}-1$

C

$1+\sqrt{\frac{2}{3}}$

D

$\sqrt{\frac{3}{2}}+1$

(IIT-2008)

Solution

Hyperbola is $\frac{(x-\sqrt{2})^2}{4}-\frac{(y+\sqrt{2})^2}{2}=1$

$ a=2, b=\sqrt{2} $

$ e=\sqrt{\frac{3}{2}}$

Area $=\frac{1}{2} \mathrm{a}(\mathrm{e}-1) \times \frac{\mathrm{b}^2}{\mathrm{a}}=\frac{1}{2} \frac{(\sqrt{3}-\sqrt{2}) \times 2}{\sqrt{2}}=\frac{(\sqrt{3}-\sqrt{2})}{\sqrt{2}}$

$\Rightarrow \text { Area }=\left(\sqrt{\frac{3}{2}}-1\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.