Consider a branch of the hyperbola $x^2-2 y^2-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point $A$. Let $B$ be one of the end points of its latus rectum. If $\mathrm{C}$ is the focus of the hyperbola nearest to the point $\mathrm{A}$, then the area of the triangle $\mathrm{ABC}$ is

  • [IIT 2008]
  • A

    $1-\sqrt{\frac{2}{3}}$

  • B

    $\sqrt{\frac{3}{2}}-1$

  • C

    $1+\sqrt{\frac{2}{3}}$

  • D

    $\sqrt{\frac{3}{2}}+1$

Similar Questions

The locus of the point of intersection of the lines $bxt - ayt = ab$ and $bx + ay = abt$ is

Tangents are drawn to the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contacts of the tangents on the hyperbola are

$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ $(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$

$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$ $(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$

  • [IIT 2012]

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

The tangent to the hyperbola, $x^2 - 3y^2 = 3$  at the point $\left( {\sqrt 3 \,\,,\,\,0} \right)$ when associated with two asymptotes constitutes :

Point from which two distinct tangents can be drawn on two different branches of the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = \,1$ but no two different tangent can be drawn to the circle $x^2 + y^2 = 36$ is