Let the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}- y ^{2}=1$ and the ellipse $E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of $H$ is equal to the length of latus rectum of $E$. If $e_{ H }$ and $e_{ E }$ are the eccentricities of $H$ and $E$ respectively, then the value of $12\left( e _{ H }^{2}+ e _{ E }^{2}\right)$ is equal to

  • [JEE MAIN 2022]
  • A

    $42$

  • B

    $40$

  • C

    $36$

  • D

    $47$

Similar Questions

If a hyperbola has length of its conjugate axis equal to $5$ and the distance between its foci is $13$, then the eccentricity of the hyperbola is

  • [JEE MAIN 2019]

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y^{2}-9 x^{2}=36$

The equation of the tangent at the point $(a\sec \theta ,\;b\tan \theta )$ of the conic $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is

If area of quadrilateral formed by tangents  drawn at ends of latus rectum of hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is equal to square of distance between centre and one  focus of hyperbola, then $e^3$ is ($e$ is eccentricity of hyperbola)

A hyperbola passes through the foci of the ellipse $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is ...... .

  • [JEE MAIN 2021]