10-2. Parabola, Ellipse, Hyperbola
hard

Let the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}- y ^{2}=1$ and the ellipse $E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of $H$ is equal to the length of latus rectum of $E$. If $e_{ H }$ and $e_{ E }$ are the eccentricities of $H$ and $E$ respectively, then the value of $12\left( e _{ H }^{2}+ e _{ E }^{2}\right)$ is equal to

A

$42$

B

$40$

C

$36$

D

$47$

(JEE MAIN-2022)

Solution

$\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{1}=1$

$e _{ H }=\sqrt{1+\frac{1}{ a ^{2}}} \quad \frac{ x ^{2}}{4}+\frac{ y ^{2}}{3}=1$

$\ell \cdot R .=\frac{2}{ a } \quad \ell R =\frac{2 \times 3}{\frac{2}{1-\frac{3}{4}}}=\frac{1}{2}$

$\frac{2}{ a }=3$

$a =\frac{2}{3}$

$e _{ H }=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2}$

$12\left( e _{ H }^{2}+ e _{ E }^{2}\right)=12\left(\frac{13}{4}+\frac{1}{4}\right)$

$=\frac{12 \times 14}{4}=42$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.