Let the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}- y ^{2}=1$ and the ellipse $E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of $H$ is equal to the length of latus rectum of $E$. If $e_{ H }$ and $e_{ E }$ are the eccentricities of $H$ and $E$ respectively, then the value of $12\left( e _{ H }^{2}+ e _{ E }^{2}\right)$ is equal to

  • [JEE MAIN 2022]
  • A

    $42$

  • B

    $40$

  • C

    $36$

  • D

    $47$

Similar Questions

A tangent to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{2} = 1$ meets $x-$ axis at $P$ and $y-$ axis at $Q$. Lines $PR$ and $QR$ are drawn such that $OPRQ$ is a rectangle (where $O$ is the origin). Then $R$ lies on

  • [JEE MAIN 2013]

If $e$ and $e’$ are eccentricities of hyperbola and its conjugate respectively, then

Equation of the normal to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ perpendicular to the line $2x + y = 1$ is

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to

  • [AIEEE 2012]

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$