Consider a circle $C_1: x^2+y^2-4 x-2 y=\alpha-5$.Let its mirror image in the line $y=2 x+1$ be another circle $C _2: 5 x ^2+5 y ^2-10 fx -10 gy +36=0$.Let $r$ be the radius of $C _2$. Then $\alpha+ r$ is equal to $......$.

  • [JEE MAIN 2023]
  • A

     $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Let $C_i \equiv  x^2 + y^2 = i^2 (i = 1,2,3)$ are three circles. If there are $4i$ points on circumference of circle $C_i$. If no three of all the points on three circles are collinear then number of triangles which can be formed using these points whose circumcentre does not lie on origin, is-

The centre$(s)$ of the circle$(s)$ passing through the points $(0, 0) , (1, 0)$ and touching the circle $x^2 + y^2 = 9$ is/are :

The number of common tangents, to the circles $x^2+y^2-18 x-15 y+131=0$ and $x^2+y^2-6 x-6 y-7=0$, is :

  • [JEE MAIN 2023]

The locus of centre of the circle which cuts the circles${x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ orthogonally is

A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to