10-1.Circle and System of Circles
hard

Consider a circle $C_1: x^2+y^2-4 x-2 y=\alpha-5$.Let its mirror image in the line $y=2 x+1$ be another circle $C _2: 5 x ^2+5 y ^2-10 fx -10 gy +36=0$.Let $r$ be the radius of $C _2$. Then $\alpha+ r$ is equal to $......$.

A

 $1$

B

$2$

C

$3$

D

$4$

(JEE MAIN-2023)

Solution

$x^2+y^2-4 x-2 y+5-\alpha=0,$

$C_1(2,1) r_1=\sqrt{\alpha}$

$2 x-y+1=0$

Image of $(2,1)$

$\frac{x-2}{2}=\frac{y-1}{-1}=\frac{-2(4-1+1)}{5}$

$\frac{x-2}{2}=\frac{y-1}{-1}=\frac{-8}{5}$

$x=2-\frac{16}{5}=\frac{-6}{5}, y=1+\frac{8}{5}=\frac{13}{5}$

$x^2+y^2-2 f x-2 g y+\frac{36}{5}=0$

$C_2(f, g)$

$r _2=\sqrt{ f ^2+ g ^2-\frac{36}{5}}$

$\alpha= f ^2+ g ^2-\frac{36}{5}$

$\therefore f =-\frac{6}{5}, g =\frac{13}{5}$

$\alpha=\frac{36}{25}+\frac{169}{25}-\frac{36}{5}$

$=\frac{36+169-180}{25} \Rightarrow \alpha=1 \Rightarrow r =1$

$\therefore \alpha+ r =2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.