Two circles with equal radii intersecting at the points $(0, 1)$ and $(0, -1).$ The tangent at the point $(0, 1)$ to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is
$1$
$2$
$2\sqrt 2$
$\sqrt 2$
The equation of a circle passing through points of intersection of the circles ${x^2} + {y^2} + 13x - 3y = 0$ and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and point $(1, 1)$ is
The radical axis of two circles and the line joining their centres are
Circles ${(x + a)^2} + {(y + b)^2} = {a^2}$ and ${(x + \alpha )^2}$ $ + {(y + \beta )^2} = $ ${\beta ^2}$ cut orthogonally, if
The equation of the circle passing through the point $(-2, 4)$ and through the points of intersection of the circle ${x^2} + {y^2} - 2x - 6y + 6 = 0$ and the line $3x + 2y - 5 = 0$, is
If the equation of the common tangent at the point $(1, -1)$ to the two circles, each of radius $13$, is $12x + 5y -7 = 0$, then the centre of the two circles are