Consider a sequence whose sum of first $n$ -terms is given by $S_n = 4n^2 + 6n, n \in N$, then $T_{15}$ of this sequence is -
$118$
$120$
$122$
$86$
If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$
Find the sum of odd integers from $1$ to $2001 .$
Suppose that all the terms of an arithmetic progression ($A.P.$) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is $6: 11$ and the seventh term lies in between $130$ and $140$ , then the common difference of this $A.P.$ is
If the sum of the $10$ terms of an $A.P.$ is $4$ times to the sum of its $5$ terms, then the ratio of first term and common difference is
Let $s _1, s _2, s _3, \ldots \ldots, s _{10}$ respectively be the sum to 12 terms of 10 A.P.s whose first terms are $1,2,3, \ldots, 10$ and the common differences are $1,3,5, \ldots, 19$ respectively. Then $\sum \limits_{i=1}^{10} s _{ i }$ is equal to