The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is

  • A

    ${S_1} + {S_3} = {S_2}$

  • B

    ${S_1} + {S_3} = 2{S_2}$

  • C

    ${S_1} + {S_2} = 2{S_3}$

  • D

    ${S_1} + {S_2} = {S_3}$

Similar Questions

If $p$ times the ${p^{th}}$ term of an $A.P.$ is equal to $q$ times the ${q^{th}}$ term of an $A.P.$, then ${(p + q)^{th}}$ term is

If ${a^2},\;{b^2},\;{c^2}$ are in $A.P.$, then ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ and ${(a + b)^{ - 1}}$ will be in

If $a, b, c, d$ are in $G.P.,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$

Let $S_{1}$ be the sum of first $2 n$ terms of an arithmetic progression. Let, $S_{2}$ be the sum of first $4n$ terms of the same arithmetic progression. If $\left( S _{2}- S _{1}\right)$ is $1000,$ then the sum of the first $6 n$ terms of the arithmetic progression is equal to:

  • [JEE MAIN 2021]

The $8^{\text {th }}$ common term of the series $S _1=3+7+11+15+19+\ldots . .$ ; $S _2=1+6+11+16+21+\ldots .$ is $.......$.

  • [JEE MAIN 2023]