- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then
A
${a^2}b,\,{c^2}a,\,{b^2}c$ are in $A.P.$
B
${a^2}b,\,{b^2}c,\,{c^2}a$ are in $H.P.$
C
${a^2}b,\,{b^2}c,\,{c^2}a$ are in $G.P.$
D
None of these
Solution
(a) $\frac{b}{a},\frac{c}{b},\frac{a}{c}$ are in $A.P.$
==> $\frac{{2c}}{b} = \frac{b}{a} + \frac{a}{c}$
$ \Rightarrow \frac{{2c}}{b} = \frac{{bc + {a^2}}}{{ac}}$
==> $2a{c^2} = {b^2}c + b{a^2}$
$\therefore \,{a^2}b,\,{c^2}a$ and ${b^2}c$ are in $A.P.$
Standard 11
Mathematics