If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then

  • A

    ${a^2}b,\,{c^2}a,\,{b^2}c$ are in $A.P.$

  • B

    ${a^2}b,\,{b^2}c,\,{c^2}a$ are in $H.P.$

  • C

    ${a^2}b,\,{b^2}c,\,{c^2}a$ are in $G.P.$

  • D

    None of these

Similar Questions

If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is

  • [JEE MAIN 2022]

Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.

  • [JEE MAIN 2023]

If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $

If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is

  • [JEE MAIN 2022]