Gujarati
8. Sequences and Series
medium

If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then

A

${a^2}b,\,{c^2}a,\,{b^2}c$ are in $A.P.$

B

${a^2}b,\,{b^2}c,\,{c^2}a$ are in $H.P.$

C

${a^2}b,\,{b^2}c,\,{c^2}a$ are in $G.P.$

D

None of these

Solution

(a) $\frac{b}{a},\frac{c}{b},\frac{a}{c}$ are in $A.P.$

==> $\frac{{2c}}{b} = \frac{b}{a} + \frac{a}{c}$

$ \Rightarrow \frac{{2c}}{b} = \frac{{bc + {a^2}}}{{ac}}$

==> $2a{c^2} = {b^2}c + b{a^2}$

$\therefore \,{a^2}b,\,{c^2}a$ and ${b^2}c$ are in $A.P.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.