Gujarati
Hindi
10-1.Circle and System of Circles
normal

Consider the equation of circles

$S_1 : x^2 + y^2 + 24x - 10y + a = 0$

$S_2 : x^2 + y^2 = 36$ which of the following is not correct

A

Number of non-negative integral values of $'a'$ such that $S_1 = 0$ represents a real circle $170$

B

If $S_1 = 0$ and $S_2 = 0$ has no point in common, then number of integral values of $a$ is more than $49$

C

If $S_1 = 0$ and $S_2 = 0$ intersect orthogonally then $a = 36$

D

If $a = 0$, then number off common tangents to the circles $S_1 = 0$. and $S_2 = 0$ are $3$

Solution

$(1)$ ${S_1} \equiv {x^2} + {y^2} + 24x – 10y + a = 0$

for real circle, $g^{2}+f^{2}-c \geq 0$

$144+25-a \geq 0$

$a \leq 169$

Also $a \geq 0$

$\therefore \quad$ Total non-negative integral values of

$a=170$

$(2)$ for no point in common $c_{1} c_{2}>r_{1}+r_{2}$

${\&\,\, c_{1} c_{2}<\left|r_{1}-r_{2}\right|} $

${c_{1} c_{2}=13} $

${13>\sqrt{169-a}+6} $

${\Rightarrow \quad 169-a<49} $

$a > 120$ and $a \le 169$

So in this condition we have $49$ integral values of a

But from $c_{1} c_{2}<\left|r_{1}-r_{2}\right|,$

we will get additional values of a. So

$B$ is false

$(3)$ for orthogonal cut

${2.12 .0+2(-5) .0=-36+a} $

${\Rightarrow \quad a=36}$

$(4)$ If $a=0, c_{1} c_{2}=13 $ and $ r_{1}+r_{2}=19$

${c_1}{c_2} < {r_1} + {r_2}$

No. of common tangent $=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.