The number of integral values of $\lambda $ for which $x^2 + y^2 + \lambda x + (1 - \lambda )y + 5 = 0$ is the equation of a circle whose radius cannot exceed $5$ , is

  • A

    $14$

  • B

    $18$

  • C

    $16$

  • D

    None of these

Similar Questions

The number of circles touching the line $y - x = 0$ and the $y$-axis is

The equation of the circle which intersects circles ${x^2} + {y^2} + x + 2y + 3 = 0$, ${x^2} + {y^2} + 2x + 4y + 5 = 0$and ${x^2} + {y^2} - 7x - 8y - 9 = 0$ at right angle, will be

If the circles ${x^2} + {y^2} + 2ax + cy + a = 0$ and ${x^2} + {y^2} - 3ax + dy - 1 = 0$ intersect in two distinct points $P$ and $Q$ then the line $5x + by - a = 0$ passes through $P$ and $Q$ for

  • [AIEEE 2005]

The equation of the circle passing through the point $(1, 2)$ and through the points of intersection of $x^2 + y^2 - 4x - 6y - 21 = 0$ and $3x + 4y + 5 = 0$ is given by

  • [AIEEE 2012]

A circle $S$ passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^2+y^2=16$ and $x^2+y^2=1$. Then

$(A)$ radius of $S$ is $8$

$(B)$ radius of $S$ is $7$

$(C)$ centre of $S$ is $(-7,1)$

$(D)$ centre of $S$ is $(-8,1)$

  • [IIT 2014]