- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
The number of integral values of $\lambda $ for which $x^2 + y^2 + \lambda x + (1 - \lambda )y + 5 = 0$ is the equation of a circle whose radius cannot exceed $5$ , is
A
$14$
B
$18$
C
$16$
D
None of these
Solution
Here, radius $\sqrt{\left(\frac{\lambda}{2}\right)^{2}+\left(\frac{1-\lambda}{2}\right)^{2}-5 \leq 5} \quad$
$\Rightarrow 2 \lambda^{2}-2 \lambda-119 \leq 0$
$\therefore \frac{1-\sqrt{239}}{2} \leq \lambda \leq \frac{1+\sqrt{239}}{2} $
$\Rightarrow-7.2 \leq \lambda \leq 8.2(\text { nearly }) $
$\therefore \lambda=-7,-6, \ldots, 8$
Standard 11
Mathematics