The number of integral values of $\lambda $ for which $x^2 + y^2 + \lambda x + (1 - \lambda )y + 5 = 0$ is the equation of a circle whose radius cannot exceed $5$ , is

  • A

    $14$

  • B

    $18$

  • C

    $16$

  • D

    None of these

Similar Questions

Two tangents are drawn from a point $P$ on radical axis to the two circles touching at $Q$ and $R$ respectively then triangle formed by joining $PQR$ is

If the circles ${x^2} + {y^2} + 2ax + cy + a = 0$ and ${x^2} + {y^2} - 3ax + dy - 1 = 0$ intersect in two distinct points $P$ and $Q$ then the line $5x + by - a = 0$ passes through $P$ and $Q$ for

  • [AIEEE 2005]

If a circle $C,$  whose radius is $3,$ touches externally the circle, $x^2 + y^2 + 2x - 4y - 4 = 0$ at the point $(2, 2),$  then the length of the intercept cut by circle $c,$  on the $x-$ axis is equal to

  • [JEE MAIN 2018]

Let $C_1$ and $C_2$ be the centres of the circles $x^2 + y^2 -2x -2y -2 = 0$ and $x^2 + y^2 - 6x-6y + 14 = 0$ respectively. If $P$ and $Q$ are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral $PC_1QC_2$ is ............. $\mathrm{sq. \, units}$

  • [JEE MAIN 2019]

The equation of the circle which touches the circle ${x^2} + {y^2} - 6x + 6y + 17 = 0$ externally and to which the lines ${x^2} - 3xy - 3x + 9y = 0$ are normals, is