$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$ પ્રમાણે વ્યાખ્યાયિત વિધેય $f: \mathbb{R} \rightarrow \mathbb{R}$ ધ્યાને લો. જો $f$ નું સંયોજન $\underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{1090 \cdots+1}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$ હોય, તો $\sqrt{3 \alpha+1}$ નું મૂલ્ચ .......... છે.
$1044$
$1075$
$1056$
$1024$
વિધેય $f:\{1,2,3,4\} \to \{1,2,3,4,5,6\}$ કેટલા મળે કે જેથી $f (1)+ f (2)= f (3)$ થાય.
$x$ ની બધી કિમતો ધરાવતો ગણ મેળવો.
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
ધારોક $f, g: N -\{1\} \rightarrow N$ એ નીચે મુજબ વ્યાખ્યાયિત વિધેયો છે: $f(a)=a$, જ્યાં $\alpha$ એ એવા અવિભાજ્યો $p$ ની ધાતોમાંની મહ્ત્તમ ધાત છે કે જેથી $p^{\alpha}$ વડે $a$ વિભાજ્ય હોય, અને $g(a)=a+1$, પ્રત્યેક $a \in N -\{1\}$, તો વિધેય $f+g$ એ
જો $S=\{1,2,3,4,5,6,7\} $ આપેલ છે. વિધેય $f:S \rightarrow S$ કેટલા શક્ય બને કે જેથી દરેક $m, n \in S$ માટે $f(m \cdot n)=f(m) \cdot f(n)$ અને $m . n \in S$ થાય.
$\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right] = . . . . $ (કે જ્યાં $[x]$ એ મહતમ પૃણાંક વિધેય છે )