$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$ દ્વારા વ્યાખ્યાયિત વિધેય $f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$ ધ્યાને લો. નીચેના વિધાનો ધ્યાને લો
$(I)$ $y=f(x)$ એ $x$-અક્ષને બરાબર એક બિંદુએ છેદ છે.
$(II)$ $y=f(x)$ એ $x$-અક્ષને $x=\cos \frac{\pi}{12}$ આગળ છેદ છે. તો.......
ફક્ત $(II)$ સાચું છે.
$(I)$ અને $(II)$ બંને ખોટા છે.
ફક્ત $(I)$ સાચું છે.
$(I)$ અને $(II)$ બંને સાચા છે.
વિધેય $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ માટે $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ થાય જો $\mathrm{f}(1)=2$ અને $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ હોય તો $n$ કિમત મેળવો જ્યાં $\mathrm{g}(\mathrm{n})=20$ થાય
વિધેય $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ ને વ્યાખ્યાયિત થવા માટે $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ માંથી મહતમ અંતરાલ મેળવો.
ધારો કે $f : R \rightarrow R$ એ સતત વિધેય છે કે જેથી $f(3 x)-f(x)=x$ છે જો $f(8)=7$ હોય તો $f(14)$ ની કિમંત મેળવો.
જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ હોય તો $b$ ની કઇ કિમતો માટે $f(x)$ ની $x = 1$ મહત્તમ કિમત મળે