1.Relation and Function
hard

$f(1)+f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$ જ્યાં $f(1)=1$ નું સમાધાન કરતો વિધેય $f: N \rightarrow R$ ધ્યાને લો તો $\frac{1}{f(2022)}+\frac{1}{f(2028)}=............$

A

$8200$

B

$8000$

C

$8400$

D

$8100$

(JEE MAIN-2023)

Solution

Given for $x \geq 2$

$f(1)+2 f(2)+\ldots \ldots+x f(x)=x(x+1) f(x)$

$\text { replace } x \text { by } x +1$

$\Rightarrow \quad x(x+1) f(x)+(x+1) f(x+1)$

$=(x+1)(x+2) f(x+1)$

$\Rightarrow \quad \frac{x}{f(x+1)}+\frac{1}{f(x)}=\frac{(x+2)}{f(x)}$

$\Rightarrow \quad x f(x)=(x+1) f(x+1)=\frac{1}{2}, x \geq 2$

$f (2)=\frac{1}{4}, f (3)=\frac{1}{6}$

$\text { Now } f (2022)=\frac{1}{4044}$

$f(2028)=\frac{1}{4056}$

So, $\frac{1}{f(2022)}+\frac{1}{f(2028)}=4044+4056=8100$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.