Consider the hyperbola

$\frac{x^2}{100}-\frac{y^2}{64}=1$

with foci at $S$ and $S_1$, where $S$ lies on the positive $x$-axis. Let $P$ be a point on the hyperbola, in the first quadrant. Let $\angle SPS _1=\alpha$, with $\alpha<\frac{\pi}{2}$. The straight line passing through the point $S$ and having the same slope as that of the tangent at $P$ to the hyperbola, intersects the straight line $S_1 P$ at $P_1$. Let $\delta$ be the distance of $P$ from the straight line $SP _1$, and $\beta= S _1 P$. Then the greatest integer less than or equal to $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ is. . . . . . . 

  • [IIT 2022]
  • A

    $5$

  • B

    $6$

  • C

    $7$

  • D

    $8$

Similar Questions

If ${m_1}$ and ${m_2}$are the slopes of the tangents to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ which pass through the point $(6, 2)$, then

Eccentricity of conjugate hyperbola of $16x^2 - 9y^2 - 32x - 36y - 164 = 0$ will be-

The equation of the tangent to the hyperbola $4{y^2} = {x^2} - 1$ at the point $(1, 0)$ is

The locus of the point of instruction of the lines $\sqrt 3 x - y - 4 \sqrt 3 t = 0$  $\&$  $\sqrt 3tx + ty - 4\sqrt 3 = 0$  (where $ t$  is a parameter) is a hyperbola whose eccentricity is

If $PQ$ is a double ordinate of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the center of the hyperbola. then the $'e'$ eccentricity of the hyperbola, satisfies