If $(4, 0)$ and $(-4, 0)$ be the vertices and $(6, 0)$ and $(-6, 0)$ be the foci of a hyperbola, then its eccentricity is
$5\over2$
$2$
$3\over2$
$\sqrt 2 $
If $e$ and $e’$ are the eccentricities of the ellipse $5{x^2} + 9{y^2} = 45$ and the hyperbola $5{x^2} - 4{y^2} = 45$ respectively, then $ee' = $
If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36,$ then which one of the following is true?
Let $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, where $a > b >0$, be $a$ hyperbola in the $xy$-plane whose conjugate axis $LM$ subtends an angle of $60^{\circ}$ at one of its vertices $N$. Let the area of the triangle $LMN$ be $4 \sqrt{3}$..
List $I$ | List $II$ |
$P$ The length of the conjugate axis of $H$ is | $1$ $8$ |
$Q$ The eccentricity of $H$ is | $2$ ${\frac{4}{\sqrt{3}}}$ |
$R$ The distance between the foci of $H$ is | $3$ ${\frac{2}{\sqrt{3}}}$ |
$S$ The length of the latus rectum of $H$ is | $4$ $4$ |
The correct option is:
The equation of the tangents to the conic $3{x^2} - {y^2} = 3$ perpendicular to the line $x + 3y = 2$ is
The graph of the conic $ x^2 - (y - 1)^2 = 1$ has one tangent line with positive slope that passes through the origin. the point of tangency being $(a, b). $ Then Eccentricity of the conic is