3 and 4 .Determinants and Matrices
hard

Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$

Given below are two statements:

Statement I: $f(-x)$ is the inverse of the matrix $f(x)$.

Statement II: $f(x) f(y)=f(x+y)$.

In the light of the above statements, choose the correct answer from the options given below

A

Statement $I$ is false but Statement $II$ is true

B

Both Statement $I$ and Statement $II$ are false

C

 Statement $I$ is true but Statement $II$ is false

D

 Both Statement $I$ and Statement $II$ are true

(JEE MAIN-2024)

Solution

$f(-x)=\left[\begin{array}{ccc}\cos x & \sin x & 0 \\-\sin x & \cos x & 0 \\0 & 0 & 1\end{array}\right]$

$f(x) \cdot f(-x)=\left[\begin{array}{lll}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{array}\right]=I$

Hence statement- $I$ is correct

Now, checking statement $II$

$f(y)=\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\\sin y & \cos y & 0 \\0 & 0 & 1\end{array}\right]$

$f(x) \cdot f(y)=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\\sin (x+y) & \cos (x+y) & 0 \\0 & 0 & 1\end{array}\right]$

$ \Rightarrow f(x) \cdot f(y)=f(x+y)$

Hence statement -$II$ is also correct.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.