Gujarati
Hindi
2. Electric Potential and Capacitance
hard

Consider three concentric metallic spheres $A, B$ and $C$ of radii $a , b, c$, respectively where $a < b < c$. $A$ and $B$ are connected, whereas $C$ is grounded. The potential of the middle sphere $B$ is raised to $V$, then the charge on the sphere $C$ is

A

$-4 \pi \varepsilon_0 V \frac{b c}{c-b}$

B

$+4 \pi \varepsilon_0 V \frac{b c}{c-b}$

C

$-4 \pi \varepsilon_0 V \frac{a c}{c-a}$

D

zero

(KVPY-2012)

Solution

(a)

Let potential source (cell) of $V$ volts is connected across $B$ and $C$. Then potential on surface of $B=V_B=\frac{k q}{b}+\frac{k(-q)}{c}$

As given, $\quad V_B=V$

So, $\quad V=k q\left(\frac{1}{b}-\frac{1}{c}\right)$

$=k q\left(\frac{c-b}{b c}\right)$

$\Rightarrow \quad q=\frac{V b c}{k(c-b)}$

So, charge on $C$ is $-q=\frac{-V b c}{k(c-b)}$ where, $k=\frac{1}{4 \pi \varepsilon_0}=$ constant.

Hence, the charge on the sphere is

$-4 \pi \varepsilon_0 \frac{V b c}{(c-b)}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.