$\mathop {{F_1}}\limits^ \to = 2\hat i + 5\hat k$ तथा $\mathop {{F_2}}\limits^ \to = 3\hat j + 4\hat k$ सदिशों के अदिश गुणनफल का परिमाण होगा
$26$
$23$
$5\sqrt {33} $
$20$
दो बल $\mathop {{F_1}}\limits^ \to = 5\hat i + 10\hat j - 20\hat k$ तथा $\mathop {{F_2}}\limits^ \to = 10\hat i - 5\hat j - 15\hat k$ एक ही बिन्दु पर कार्यरत हैं। $\mathop {{F_1}}\limits^ \to $ तथा $\mathop {{F_2}}\limits^ \to $ के बीच का कोण ....... $^o$ होगा
$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$
तीन कण $P , Q$ और $R$ क्रमशः सदिशों $\overrightarrow{ A }=\hat{ i }+\hat{ j }, \overrightarrow{ B }=\hat{ j }+\hat{ k }$ और $\overrightarrow{ C }=-\hat{ i }+\hat{ j }$ के अनुदिश गमन कर रहे है। ये किसी बिन्दु पर टकराते है और विभिन्न दिशाओं में गमन करना आरम्भ कर देते है। कण $P$ उस तल के अभिलम्बवत भी गमन करता है जिसमें सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B }$ है। इसी प्रकार कण $Q$ उस तल के अभिलम्बवत गति कर रहा है जिसमें सदिश $\overrightarrow{ A }$ और $\overrightarrow{ C }$ है। $P$ और $Q$ की गति की दिशाओं के बीच कोण $\cos ^{-1}\left(\frac{1}{\sqrt{x}}\right)$ है। तो $x$ का मान $\dots$ है
सदिशों $\mathop A\limits^ \to = 3\hat i + 4\hat j + 5\hat k$ तथा $\mathop B\limits^ \to = 3\hat i + 4\hat j - 5\hat k$ के बीच का कोण....... $^o$ है