धनात्मक आवेशों के एक समूह के लिए निम्न कथनों में से कौन-सा सही है?
किसी बिन्दु पर, निकाय का कुल विभव शून्य नही हो सकता किन्तु उस बिन्दु पर कुल विद्युत क्षेत्र शून्य हो सकता है।
किसी बिन्दु पर, निकाय का कुल विभव शून्य हो सकता है किन्तु उस बिन्दु पर कुल विद्युत क्षेत्र शून्य नहीं हो सकता है।
किसी बिन्दु पर कुल विभव एव कुल विद्युत क्षेत्र दोनो शून्य हो सकते है।
किसी बिन्दु पर, कुल विभव एवं कुल विद्युत क्षेत्र दोनों शून्य नहीं हो सकते है।
एक आवेशित गोले के बाहरी क्षेत्र में दो बिन्दुओं $1$ तथा $2$ पर विचार करें। यह बिन्दु गोले से अधिक दूर नहीं है यदि $E$ तथा $V$ क्रमश: विद्युत क्षेत्र सदिश तथा विद्युत विभव को प्रदर्शित करते हैं तो निम्न में से कौनसा सम्भव नहीं है
चित्र में दिखाये गये अनुसार $2 L$ भुजा के एक वर्ग के चार कोनों पर $+ q ,+ q ,- q$ और $- q$ आवेश स्थित है, दो आवेश $+ q$ और $+ q$ के बीच के मध्य बिन्दु $A$ पर विधुत विभव है -
त्रिज्या $R$ आवेशित धात्विक पतले खोल के केन्द्र से त्रिज्या दूरी $r$ के साथ स्थिर विधुत विभव के विचरण को दर्शाने वाला ग्राफ है
एक पतले गोलीय कोश (shell) का केन्द्र उद्गम पर है व त्रिज्या $R$ है। उस पर धनावेश इस प्रकार वितरीत है कि पष्ठ-घनत्व एकसमान है। विधुत क्षेत्र के मान $|\vec{E}(r)|$ और विधुत -विभव $V(r)$ का , केन्द्र से दूरी $r$ के साथ बदलाव का सर्वोत्तम वर्णन किस ग्राफ में है।
अनंत लम्बाई का एक पतला तार, जिसका एकसमान रेखीय आवेश घनत्व $5 nC / m$ है, को $1 \ m$ त्रिज्या की एक गोलीय सतह को भेदकर, चित्रानुसार रखा है| गोलीय सतह पर $10 \ nC$ आवेश एकसमान रूप से वितरित है। यदि आवेशों का अभिविन्यास स्थैतिक है, तो बिंदुओं $P$ तथा $R$ के बीच के विभवान्तर का वोल्ट में परिमाण ........... होगा| [दिया है: SI इकाई में $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9, \ln 2=0.7$; तार द्वारा छेदित क्षेत्र नगण्य मानिये|]