7.Gravitation
hard

Correct formula for height of a satellite from earths surface is :

A

$\left(\frac{T^2 R^2 g}{4 \pi}\right)^{1 / 2}-R$

B

$\left(\frac{T^2 R^2 g}{4 \pi^2}\right)^{1 / 3}-R$

C

 $\left(\frac{\mathrm{T}^2 \mathrm{R}^2}{4 \pi^2 \mathrm{~g}}\right)^{1 / 3}-\mathrm{R}$

D

$\left(\frac{T^2 R^2}{4 \pi^2}\right)^{-1 / 3}+R$

(JEE MAIN-2024)

Solution

$\Rightarrow \frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})^2}=\frac{\mathrm{mv}^2}{(\mathrm{R}+\mathrm{h})}$

$\Rightarrow \frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}=\mathrm{v}^2 \ldots(1)$

$\Rightarrow \mathrm{v}=(\mathrm{R}+\mathrm{h}) \omega$

$\Rightarrow \mathrm{v}=(\mathrm{R}+\mathrm{h}) \frac{2 \pi}{\mathrm{T}} .$

$\Rightarrow \frac{\mathrm{GM}}{\mathrm{R}^2}=\mathrm{g}$

$\Rightarrow \mathrm{GM}=\mathrm{gR}^2 .$

Put value from $(2) \& (3) in eq. (1)$

$\Rightarrow \frac{\mathrm{gR}^2}{(\mathrm{R}+\mathrm{h})}=(\mathrm{R}+\mathrm{h})^2\left(\frac{2 \pi}{\mathrm{T}}\right)^2$

$\Rightarrow \frac{\mathrm{T}^2 \mathrm{R}^2 \mathrm{~g}}{(2 \pi)^2}=(\mathrm{R}+\mathrm{h})^3$

$\Rightarrow\left[\frac{\mathrm{T}^2 \mathrm{R}^2 \mathrm{~g}}{(2 \pi)^2}\right]^{1 / 3}-\mathrm{R}=\mathrm{h}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.