7.Gravitation
hard

A rocket has to be launched from each in such a way that it never returns. If $E$ is the minimum energy delivered by the rocket launcher, what should be the minimum energy that the launcher should have if the same rocket is to be launched from the surface of the moon ? Assume that the density of the earth and the moon are equal and that the earth’s volume is $64$ times the volume of the moon.

A

$\frac{E}{32}$

B

$\frac{E}{16}$

C

$\frac{E}{64}$

D

$\frac{E}{4}$

(JEE MAIN-2019)

Solution

Minmun energy required $(E)=-(Potential\,energy\,of\,object\,at\,surface\,of\,earth)$

$Now\,{M_{earth}} = 64{M_{moon}}$

$\rho  \cdot \frac{4}{3}\pi R_e^3 = 64 \cdot \frac{4}{3}\pi R_m^3$    $ \Rightarrow {R_e} = 4{R_m}$

$Now\frac{{{E_{moon}}}}{{{E_{earth}}}} = \frac{{{M_{moon}}}}{{{M_{earth}}}} \cdot \frac{{{R_{earth}}}}{{{R_{moon}}}} = \frac{1}{{64}} \times \frac{4}{1}$

$ \Rightarrow {E_{moon}} = \frac{E}{{16}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.