Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)
${10^{ - 5}}$
${10^{ - 4}}$
${10^{ - 3}}$
${10^{ - 2}}$
${K_{C{H_3}COOH}} = 1.9 \times {10^{ - 5}}$. Calculate $pH$ at end point in titration of $0.1$ $M$ $C{H_3}COOH$ and $0.1$ $M$ $NaOH$.
Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.
[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]
At $25\,^oC$, the dissociation constant of $CH_3COOH$ and $NH_4OH$ in aqueous solution are almost the same. The $pH$ of a solution $0.01\, N\, CH_3COOH$ is $4.0$ at $25\,^oC$. The $pH$ of $0.01\, N\, NH_4OH$ solution at the same temperature would be
What are Diprotic and Triprotic acid ? differentiation eat .
Calculate the ${H^ + }$ ion concentration in a $1.00\,(M)$ $\,HCN\,$ litre solution $({K_a} = 4 \times {10^{ - 10}})$