બે વિધુતભારોના તંત્રની સ્થિતિ ઊર્જાનું સૂત્ર મેળવો.
ધારોકે, શરૂઆતમાં $q_{1}$ અને $q_{2}$ વિદ્યુતભારો અનંત અંતરે છે. તેમાંના $q_{1}$ વિદ્યુતભારને ઊગમબિંદુની સાપેક્ષે $r_{1}$ અંતરે લાવતાં કરવું પડતું કાર્ય શૂન્ય છે. કારણ કે, $q_{1}$ ની ગતિની વિરુધમાં કાર્ય કરવું પડે તેવું કોઈ બાહ્ય ક્ષેત્ર હાજર નથી.
$\therefore W _{1}=0$
આ $q_{1}$ વિદ્યુતભારનું અવકાશમાં સ્થિતિમાન,
$V _{1}=\frac{k q_{1}}{r_{1 p}}$
જ્યાં $r_{1 p}=$ અવકાશમાંના કોઈ બિંદુ $P$ નું $q_{1}$ ના સ્થાનથી અંતર છે.
હવે $q_{1}$ ના વિદ્યુતક્ષેત્રમાં અનંત અંતરેથી $q_{2}$ વિદ્યુતભારને $r_{2}$ અંતરે આવેલા બિંદુએ લાવવા માટે બાહ્ય બળે કરેલું કાર્ય,
$W _{2}=q_{2} V _{1}$
$\therefore W _{2}=\frac{k q_{1} q_{2}}{r_{12}}$$\ldots (2)$
જ્યાં $r_{12}=r_{1}$ અને $r_{2}$ અંતરે આવેલાં બિદુઓ વચ્ચેનું અંતર છે.
સ્થિતવિદ્યુતબળ એ સંરક્ષી બળ હોવાથી આ કાર્ય તંત્રની સ્થિતિઊર્જા રૂપે સંગ્રહ પામે છે.
બે વિદ્યુતભારો $q_{1}$ અને $q_{2}$ ના તંત્રની સ્થિતિઊર્જા,
$U = W _{1}+ W _{2}$
$\therefore U =\frac{k q_{1} q_{2}}{r_{12}}\dots(2)$
આમ, બે વિદ્યુતભારોના તંત્રની સ્થિતિઊર્જા તેમના ગુણાકારના સમપ્રમાણમાં અને તેમની વચ્ચેના અંતરના વ્યસ્ત પ્રમાણમાં છે.
જે પ્રથમ $q_{2}$ ને લાવીએ અને પછી $q_{1}$ ને લાવીએ તો પણ સ્થિતિઊર્જા સમીકરણ $(2)$ જેટલું જ મળે છે. વ્યાપક રીતે વિદ્યુતભારોને ગમે તે રીતે પોતાના નિશ્ચિત સ્થાનો પર લાવવામાં આવે તો પધ્ધ સ્થિતિઊર્જનું સૂત્ર બદલાતું નથી. કારણ કે સ્થિત વિદ્યુતબળ સંરક્ષી છે તેથી થતું કાર્ય એ માર્ગ પર આધારિત નથી.
આકૃતિ માં દર્શાવ્યા મુજબ $d$ બાજુવાળા ચોરસ $ABCD$ ના શિરોબિંદુઓ પર ચાર વિદ્યુતભારો ગોઠવેલ છે. $(a)$ આ ગોઠવણી પ્રાપ્ત કરવા માટે જરૂરી કાર્ય શોધો. $(b)$ ચાર વિદ્યુતભારોને તે શિરોબિંદુઓ પર જકડી રાખીને વિદ્યુતભાર $q_0$ ને ચોરસના કેન્દ્ર પર લાવવામાં આવે છે. આ માટે વધારાનું કેટલું કાર્ય જરૂરી છે ?
$(a)$ $(-9 \,cm, 0, 0)$ અને $(9\, cm, 0, 0)$ સ્થાનોએ રહેલા બે વિદ્યુતભારો અનુક્રમે $7\,\mu C$ અને $-2\, \mu C$ ના તંત્રની (બાહ્યક્ષેત્ર વિના) સ્થિત વિદ્યુત સ્થિતિઊર્જા શોધો.
$(b) $ આ બે વિદ્યુતભારોને એકબીજાથી અનંત અંતર સુધી જુદા પાડવા માટે કેટલું કાર્ય જરૂરી છે ?
$(c)$ ધારો કે આ વિદ્યુતભારોના તંત્રને બાહ્ય વિદ્યુતક્ષેત્ર $E =A(1/r^2)$ માં મૂકવામાં આવે છે. જ્યાં, $A=9\times 10^5\,NC^{-1}\,m^2$ છે, તો આ તંત્રની વિદ્યુત સ્થિતિઊર્જા કેટલી હશે ?
બે વિદ્યુતભારો $-q$ અને $+q$ અનુક્રમે $(0, 0, -a)$ અને $(0, 0, a)$ બિંદુઓએ રહેલા છે.
$(a)$ $(0, 0,z)$ અને $(x,y,0)$ બિંદુઓએ વિદ્યુતક્ષેત્ર કેટલું કેટલું છે?
$(b)$ સ્થિતિમાન, ઉગમબિંદુથી કોઈ બિંદુના અંતર $r$ પર, $r/a\,>\,>\,1$ હોય ત્યારે કેવી રીતે આધારિત છે તે દર્શાવતું સૂત્ર મેળવો.
$(c)$ એક નાના પરીક્ષણ વિદ્યુતભારને $x$ -અક્ષ પર $(5, 0, 0)$ બિંદુથી $(-7, 0, 0)$ બિંદુ સુધી લઈ જવામાં કેટલું કાર્ય થશે? જો પરીક્ષણ વિદ્યુતભારનો માર્ગ તે જ બે બિંદુઓ વચ્ચે $x$ -અક્ષ પર ન હોત તો જવાબમાં ફેર પડે?
એક $8\; mC$ વિધુતભાર ઉગમબિંદુએ રહેલો છે. એક નાના $-2 \times 10^{-9} \;C$ વિધુતભારને $P (0,0,3\; cm )$ બિંદુથી $R (0,6\; cm , g \;cm )$ બિંદુએ થઈ $Q (0,4\; cm , 0),$ બિંદુએ લાવવા માટે કરેલું કાર્ય શોધો..
આકૃતિમાં દર્શાવ્યા મુજબ be $q_1$ અને $q_2$ વિદ્યુતભાર $30\;cm$ અંતરે છે. ત્રીજો વિદ્યુતભાર $q_3$ ને $C$ થી $D$ સુધી $40 \;cm$ ત્રિજ્યાના વર્તુળની ચાપ પર લઇ જવામાં આવે છે. તંત્રની સ્થિતિઊર્જામા $\frac{{{q_3}}}{{4\pi {\varepsilon _0}}}k$ ફેરફાર થાય તો, $k=$