मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
$(a, b) \in R$ का तात्पर्य है कि $(b, a) \in R$
मान लीजिए कि $A =\{1,2,3, \ldots, 14\} \cdot R =\{(x, y): 3 x-y=0,$ जहाँ $x, y \in A \}$ द्वारा, $A$ से $A$ का एक संबंध $R$ लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?
$(a, b) \in R ,$ का तात्पर्य है कि $(b, a) \in R$
मान लीजिए कि $A =\{1,2\}$ और $B =\{3,4\} . A$ से $B$ में संबंधों की संख्या ज्ञात कीजिए।
संबंध $R =\left\{\left(x, x^{3}\right): x\right.$ संख्या $10$ से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।